0

As telas da maioria dos televisores são semelhantes a um retângulo de lados 3 e 4?

As telas da maioria dos televisores são semelhantes a um retângulo de lados 3 e 4. Quando se
diz que um televisor tem 20 polegadas, significa que essa é a medida da diagonal de sua tela,
estando correto concluir que as medidas dos lados da tela, em polegadas, são
a) 3 e 4 b) 6 e 8 c) 10 e 15 d) 12 e 16 e) 16 e 20

CONFIRA O CANAL MATCÁLCULO
Solução:
Um retângulo de lados 3 e 4 tem uma diagonal igual a 5. Temos aqui um triângulo retângulo
PITAGÓRICO. Os triângulos retângulos PITAGÓRICOS são: [3, 4, 5] (onde 3 e 4 são seus catetos e
5 é a hipotenusa) e TODOS os seus múltiplos, ou seja: (6, 8, 10); (9, 12, 15); (12, 16, 20) e assim por
diante...
Mantendo-se a proporção com o retângulo de lados 3 e 4, um retângulo que tem para diagonal o
valor 20, só pode ter lados iguais a 12 e 16!
Resposta: letra d.
0

“Alguns A são R” e que “Nenhum G é R”

Se é verdade que “Alguns A são R” e que “Nenhum G é R”, então é necessariamente verdadeiro
que:
a) algum A não é G
b) algum A é G
 c) nenhum A é G
d) algum G é A
e) nenhum G é A



Solução:
Uma forma de se resolver rapidamente este tipo de questão é fazendo o seguinte:
Nas proposições categóricas do tipo:
• Todo A é B (proposição universal afirmativa);
• Nenhum A é B (proposição universal negativa);
• Algum A é B (proposição particular afirmativa);
• Algum A não é B (proposição particular negativa).
Proceda do seguinte modo:
• Elimine os atributos comuns às duas proposições;
• Conclua do seguinte modo:
⇒ “Todo” com “Nenhum” resulta “Nenhum”, associando os atributos restantes;
⇒ “Todo” com “Algum” resulta “Algum” associando os atributos restantes;
⇒ “Nenhum” com “Algum” resulta “Algum... não é...” associando os atributos restantes.
Neste questão temos que:
• Alguns A são R
• Nenhum G é R
O atributo comum aqui é o “R”. Eliminando-o, ficaremos com Algum A não é G
Resposta: letra a.

VISITE O CANAL DO AMIGO MATCÁLCULO
0

Equação é y = 2x^2 - 8x + 6

A parábola, cuja equação é y = 2x^2 - 8x + 6, corta o eixo dos x em dois pontos cujas abcissas são:
a) 1 e 2 b) 1 e 3 c) 2 e 3 d) 2 e 4 e) 2 e 5



Solução:
Os pontos em que uma curva corta o eixo “x” (eixo das abcissas) são as raízes da equação, ou seja,
os pontos em que y = 0. Assim:
2x^2 - 8x + 6 = 0 ⇒ (vamos dividi-la por “2”, para facilitar o cálculo) ⇒ x^2 - 4x + 3 = 0 ⇒
(Bháskara) ⇒ x’ = 1 e x” = 3
Resposta: letra b.
0

Um pequeno container com Substância

Um pequeno container em forma de paralelepípedo pesa vazio 20 kg e tem como medidas
externas 50 cm de altura e base retangular com 3 dm por 400 mm. Considerando que ele está cheio
de uma substância homogênea que pesa 1,5 kg por litro e que ocupa o espaço correspondente a
90% do seu volume externo, o peso total do container e da substância é, em quilogramas:
a) 60 b) 81 c) 90 d) 101 e) 110
Solução:
Como 1 dm^3 = 1 litro , vamos transformar as dimensões do container para dm, calculando, em
seguida o valor do seu volume:
V = 5 x 3 x 4 = 60 dm^3 ou 60 litros. A substância no interior do container ocupa 90% desse volume e pesa 1,5 kg por litro. Desse modo: 60 x 1,5 x 0,9 = 81 kg. CUIDADO!! Este é o peso SÓ da
substância. O problema pede o cálculo do peso total, isto é, da substância MAIS o container. Então:
81 + 20 = 101 kg
Resposta: letra d.