0

TFC/1996 (ESAF) O jornal Correio Brasiliense publicou, em 12/1/97, na reportagem “MEC ensaia mudanças em universidades”, um parágrafo assim

TFC/1996 (ESAF) O jornal Correio Brasiliense publicou, em 12/1/97, na reportagem “MEC ensaia mudanças em universidades”, um parágrafo assim redigido: http://matcalculo.blogspot.com.br/(...) Esses (salários), no entanto, são engordados com vantagens típicas do serviço público federal – adicionais por tempo de serviço, função comissionada e gratificação de atividade executiva, por exemplo, que multiplica por 160% o salário-base de todos os servidores...
0

O governo autorizou, em janeiro deste ano, um aumento das tarifas de chamadas locais de telefones fixos para telefones...

O governo autorizou, em janeiro deste ano, um aumento das tarifas de chamadas locais de telefones fixos para telefones móveis. Essas tarifas custavam R$ 0,27. por minuto e passaram a custar R$ 0,30 por minuto. João fez uma ligação que durou "x" minutos. O valor que João vai pagar pela ligação com a nova tarifa somado ao valor que ele pagaria pela ligação com a tarifa antiga é de R$ 3,99. O tempo gasto, em segundos, na ligação que João fez é: a) 210 b) 350 c) 420 d) 540 e) 570 CONFIRA O CANAL MATCÁLCULO Solução: Se estamos SOMANDO os valores...
0

PI

O Número Pi (p) Se você pegar qualquer círculo, medir a sua circunferência (perímetro) e dividir o resultado pelo diâmetro desse círculo, vai encontrar sempre este número: 3,14             Se você aproximar mais o número, vai achar: 3,14159             Aproximando mais ainda, achará: 3.14159265358             Se sua calculadora tiver espaço...
0

PRF/1998 (NCE-UFRJ) Uma caixa de fósforos tem 1 cm de altura e o comprimento tem 2 cm a mais que a largura. Se o...

Uma caixa de fósforos tem 1 cm de altura e o comprimento tem 2 cm a mais que a largura. Se o volume da caixa é de 24 cm2, o comprimento da caixa, em metros, é: a) 0,04 b) 0,05 c) 0,06 d) 0,10 e) 0,12 Solução: O Volume de um Prisma é dado por: V = a . b . c, onde a, b e c são suas dimensões, ou seja comprimento, largura e altura. Substituindo-se os dados do problema na fórmula, teremos: Dados: a = 1 cm; b = c - 2, V = 24 cm2. Considerando-se a como altura, b como largura e c como comprimento. Desse modo: 24 = 1× (c − 2) × c ⇒ c^2 − 2. c − 24 =...
0

Na Figura está representado o retângulo de jogo de um campo de futebol

Na Figura está representado o retângulo de jogo de um campo de futebol. Determine uma entrada de R$ 200,00 e a segunda, dois meses após, no valor de R$ 880,00. Qual a taxa mensal de juros simples utilizada? a) 2% b) 3% c) 4% d) 5% e) 6% CONFIRA O CANAL MATCÁLCULO Solução: Uma questão muito fácil! Retirando-se a entrada do valor da geladeira, restará o “saldo” a ser financiado: SALDO = 1000 - 200 = 800 Com a fórmula do Montante para juros simples: M = C.(1+ i.n) Substituindo-se os dados do problema na fórmula acima, teremos: 880 = 800 × (1+...
0

Desconto Comercial Simples: DC = N.d.n (De NaDa)

18) Um título de valor nominal de R$ 10.000,00, a vencer exatamente dentro de 3 meses, será resgatado hoje, por meio de um desconto comercial simples a uma taxa de 4% ao mês. O desconto obtido é de a) R$ 400,00 b) R$ 800,00 c) R$ 1.200,00 d) R$ 2.000,00 e) R$ 4.000,00 Solução: Um problema de aplicação direta da fórmula do Desconto Comercial Simples: DC = N.d.n , onde: DC é o desconto comercial simples; N é o valor nominal do título; d é a taxa de desconto; n é o prazo de antecipação. Temos: N = 10000; n = 3 meses; d = 4% ao mês. DC= 10000 ×...
0

Hipótese de Poincaré

Hipótese de Poincaré Vamos começar pelo que já foi resolvido, para mostrar que eles não são tão impossíveis assim. A Hipótese de Poincaré, proposta pelo matemático francês Henri Poincaré, exige um esforço de imaginação enorme. O cérebro humano só consegue perceber três dimensões, representadas por profundidade, largura e comprimento. No entanto, sabe-se que existem outras dimensões, e isso é provado matematicamente. Acontece que a Hipótese de Poincaré, conhecida como problema da laranja na quarta dimensão, deixa justamente essa dimensão...
0

As telas da maioria dos televisores são semelhantes a um retângulo de lados 3 e 4?

As telas da maioria dos televisores são semelhantes a um retângulo de lados 3 e 4. Quando se diz que um televisor tem 20 polegadas, significa que essa é a medida da diagonal de sua tela, estando correto concluir que as medidas dos lados da tela, em polegadas, são a) 3 e 4 b) 6 e 8 c) 10 e 15 d) 12 e 16 e) 16 e 20 CONFIRA O CANAL MATCÁLCULO Solução: Um retângulo de lados 3 e 4 tem uma diagonal igual a 5. Temos aqui um triângulo retângulo PITAGÓRICO. Os triângulos retângulos PITAGÓRICOS são: [3, 4, 5] (onde 3 e 4 são seus catetos e 5 é a hipotenusa)...
0

“Alguns A são R” e que “Nenhum G é R”

Se é verdade que “Alguns A são R” e que “Nenhum G é R”, então é necessariamente verdadeiro que: a) algum A não é G b) algum A é G  c) nenhum A é G d) algum G é A e) nenhum G é A Solução: Uma forma de se resolver rapidamente este tipo de questão é fazendo o seguinte: Nas proposições categóricas do tipo: • Todo A é B (proposição universal afirmativa); • Nenhum A é B (proposição universal negativa); • Algum A é B (proposição particular afirmativa); • Algum A não é B (proposição particular negativa). Proceda do seguinte modo: • Elimine os atributos...
0

Equação é y = 2x^2 - 8x + 6

A parábola, cuja equação é y = 2x^2 - 8x + 6, corta o eixo dos x em dois pontos cujas abcissas são: a) 1 e 2 b) 1 e 3 c) 2 e 3 d) 2 e 4 e) 2 e 5 Solução: Os pontos em que uma curva corta o eixo “x” (eixo das abcissas) são as raízes da equação, ou seja, os pontos em que y = 0. Assim: 2x^2 - 8x + 6 = 0 ⇒ (vamos dividi-la por “2”, para facilitar o cálculo) ⇒ x^2 - 4x + 3 = 0 ⇒ (Bháskara) ⇒ x’ = 1 e x” = 3 Resposta: letra...