0

Função Afim

Considere duas variáveis sendo x  e y uma dependente da outra, ou seja , para cada valor atribuído x corresponde a um valor de y sendo assim dizemos que y esta em função de x. Os valores atribuídos a x chamamos de domínio da função e os valores de y chamamos de imagem da função
Toda função é definida por uma lei de formação, no caso da função de primeiro grau sua lei e a seguinte:

Y = ax + y

Onde a e b são números reais sendo a diferente de 0.
O ponto b indica o ponto de encontro (intersecção) da função com o eixo de y.
A função pode ser crescente, decrescente e constante.
Função crescente: a medida que os valores de x aumentam, os valores de y correspondete tambem aumenta
Função decrescente: a medida que os valors de x aumentam, os valores de y corresponde diminuem.
Ex: y = 2x + 5
      y = 3x - 1

Gráfico




0

TFC/1996 (ESAF) O jornal Correio Brasiliense publicou, em 12/1/97, na reportagem “MEC ensaia mudanças em universidades”, um parágrafo assim



TFC/1996 (ESAF) O jornal Correio Brasiliense publicou, em 12/1/97, na reportagem “MEC ensaia mudanças em universidades”, um parágrafo assim redigido:
http://matcalculo.blogspot.com.br/(...) Esses (salários), no entanto, são engordados com vantagens típicas do serviço
público federal – adicionais por tempo de serviço, função comissionada e gratificação de
atividade executiva, por exemplo, que multiplica por 160% o salário-base de todos os
servidores públicos federais.
Sabendo que a gratificação de atividade executiva corresponde a um adicional de 160% sobre o
salário-base do servidor público, a frase sublinhada no texto estaria correta se tivesse sido redigida
do seguinte modo:
a) que multiplica por 1,6 o salário-base de todos os servidores públicos federais.
b) que multiplica por 2,6 o salário-base de cada servidor público federal.
c) que multiplica por 160 o salário-base de cada servidor público federal.
d) que acrescenta ao salário-base de todos os servidores públicos federais um valor superior ao
dobro do salário-base.
e) que torna o salário de cada servidor público federal superior ao triplo do salário-base.
Solução: Um modo direto para se resolver este tipo de questão é: sempre que um número ou uma
importância será ACRESCIDA de um percentual, o valor final será dado pela multiplicação desse
número ou importância por (1 + i), onde “i” é a taxa percentual de acréscimo colocada sempre na
forma UNITÁRIA. Desse modo, como aqui não temos a importância sobre a qual iremos acrescer os
160%, diremos que tal importância é igual a S (Salário). Então: S . (1 + 1,6) = 2,6 . S. O salário-base
ficará MULTIPLICADO por 2,6, quando acrescido em 160%.
Resposta: letra b.
0

O governo autorizou, em janeiro deste ano, um aumento das tarifas de chamadas locais de telefones fixos para telefones...


O governo autorizou, em janeiro deste ano, um aumento das tarifas de chamadas locais de
telefones fixos para telefones móveis. Essas tarifas custavam R$ 0,27. por minuto e passaram a
custar R$ 0,30 por minuto. João fez uma ligação que durou "x" minutos. O valor que João vai pagar
pela ligação com a nova tarifa somado ao valor que ele pagaria pela ligação com a tarifa antiga é de
R$ 3,99. O tempo gasto, em segundos, na ligação que João fez é:
a) 210 b) 350 c) 420 d) 540 e) 570

CONFIRA O CANAL MATCÁLCULO
Solução: Se estamos SOMANDO os valores com a tarifa antiga e com a nova, teremos:
(0,27 + 0,30) . X = 3,99 ⇒ x = 7 MINUTOS
Solicitou-se a resposta EM SEGUNDOS. Assim: 7 x 60 = 420 segundos
Resposta: letra c.
0

PI

O Número Pi (p)
Se você pegar qualquer círculo, medir a sua circunferência (perímetro) e dividir o resultado pelo diâmetro desse círculo, vai encontrar sempre este número:
3,14
            Se você aproximar mais o número, vai achar:
3,14159
            Aproximando mais ainda, achará:
3.14159265358
            Se sua calculadora tiver espaço bastante, você poderá chegar a
3.14159265358979323846264
            Ainda dá para aproximar mais, chegando a:
3.1415926535897932384626433832795028841
            Mais um pouco e você chega a:
3,1415926535897932384626433832795028841971693993751058
            A essa altura, talvez você queira saber até onde vai essa aproximação. Aí, uma surpresa: vai até o infinito, não acaba nunca! Você passaria o resto da sua vida fazendo aproximações e jamais terminaria! Não importa o tamanho do círculo, ele pode ser enorme ou bem pequeno, o resultado será sempre este mesmo número,chamado de “pi” pelos matemáticos e representado pela letra grega p (lê-se “pi”). É a mais antiga constante matemática que se conhece. É um número irracional, com infinitas casas decimais. Em 1997, Y. Kamada e D. Takahashi, da Universidade de Tóquiochegaram a 51.539.600.000 (cinquenta e um bilhões, quinhentos e trinta e nove milhões e seiscentas mil) casas decimais. Só podia ser japonês pra fazer isso…
0

PRF/1998 (NCE-UFRJ) Uma caixa de fósforos tem 1 cm de altura e o comprimento tem 2 cm a mais que a largura. Se o...


Uma caixa de fósforos tem 1 cm de altura e o comprimento tem 2 cm a mais que a largura. Se o
volume da caixa é de 24 cm2, o comprimento da caixa, em metros, é:
a) 0,04 b) 0,05 c) 0,06 d) 0,10 e) 0,12
Solução:
O Volume de um Prisma é dado por: V = a . b . c, onde a, b e c são suas dimensões, ou seja
comprimento, largura e altura. Substituindo-se os dados do problema na fórmula, teremos:
Dados: a = 1 cm; b = c - 2, V = 24 cm2. Considerando-se a como altura, b como largura e c como
comprimento. Desse modo:
24 = 1× (c − 2) × c ⇒ c^2 − 2. c − 24 = 0 ⇒ c = 6 cm.
Passando para metros (conforme foi solicitado no problema): c = 0,06 m
Resposta: letra c

VISITE O CANAL DO AMIGO MATCÁLCULO
0

Na Figura está representado o retângulo de jogo de um campo de futebol

Na Figura está representado o retângulo de jogo de um campo de futebol. Determine
uma entrada de R$ 200,00 e a segunda, dois meses após, no valor de R$ 880,00. Qual a taxa mensal
de juros simples utilizada?
a) 2% b) 3% c) 4% d) 5% e) 6%

CONFIRA O CANAL MATCÁLCULO
Solução: Uma questão muito fácil! Retirando-se a entrada do valor da geladeira, restará o “saldo” a
ser financiado: SALDO = 1000 - 200 = 800
Com a fórmula do Montante para juros simples: M = C.(1+ i.n)
Substituindo-se os dados do problema na fórmula acima, teremos: 880 = 800 × (1+ i × 2)
Logo, i = 5%
Resposta: letra d
0

Desconto Comercial Simples: DC = N.d.n (De NaDa)

18) Um título de valor nominal de R$ 10.000,00, a vencer exatamente dentro de 3 meses, será
resgatado hoje, por meio de um desconto comercial simples a uma taxa de 4% ao mês. O desconto
obtido é de
a) R$ 400,00 b) R$ 800,00 c) R$ 1.200,00
d) R$ 2.000,00 e) R$ 4.000,00




Solução:
Um problema de aplicação direta da fórmula do Desconto Comercial Simples: DC = N.d.n , onde:
DC é o desconto comercial simples; N é o valor nominal do título; d é a taxa de desconto; n é o prazo
de antecipação. Temos: N = 10000; n = 3 meses; d = 4% ao mês.
DC= 10000 × 0,04 × 3 = 1200
Resposta: letra c.

0

Hipótese de Poincaré

Hipótese de Poincaré

Vamos começar pelo que já foi resolvido, para mostrar que eles não são tão impossíveis assim. A Hipótese de Poincaré, proposta pelo matemático francês Henri Poincaré, exige um esforço de imaginação enorme. O cérebro humano só consegue perceber três dimensões, representadas por profundidade, largura e comprimento. No entanto, sabe-se que existem outras dimensões, e isso é provado matematicamente. Acontece que a Hipótese de Poincaré, conhecida como problema da laranja na quarta dimensão, deixa justamente essa dimensão de fora.

Imagine uma laranja ou mesmo o planeta Terra. Um ponto na parte superior da laranja, ou o polo da Terra, pode ser ligado a qualquer ponto da superfície por um único meridiano. Além disso, todos esses meridianos se cruzam apenas em um único outro ponto, que seria o Polo Sul. Com objetos que têm três dimensões, como é o caso da laranja, não é difícil. Mas a topologia, ramo da matemática criada por Poincaré, trabalha com objetos de n dimensões. O modelo proposto pelo matemático servia para qualquer número de n, exceto o quatro. Até que, em 2010, o Instituto Clay anunciou que a solução havia sido encontrada pelo russo Grigory Perelman, que se recusou a receber o prêmio de US$ 1 milhão.
0

As telas da maioria dos televisores são semelhantes a um retângulo de lados 3 e 4?

As telas da maioria dos televisores são semelhantes a um retângulo de lados 3 e 4. Quando se
diz que um televisor tem 20 polegadas, significa que essa é a medida da diagonal de sua tela,
estando correto concluir que as medidas dos lados da tela, em polegadas, são
a) 3 e 4 b) 6 e 8 c) 10 e 15 d) 12 e 16 e) 16 e 20

CONFIRA O CANAL MATCÁLCULO
Solução:
Um retângulo de lados 3 e 4 tem uma diagonal igual a 5. Temos aqui um triângulo retângulo
PITAGÓRICO. Os triângulos retângulos PITAGÓRICOS são: [3, 4, 5] (onde 3 e 4 são seus catetos e
5 é a hipotenusa) e TODOS os seus múltiplos, ou seja: (6, 8, 10); (9, 12, 15); (12, 16, 20) e assim por
diante...
Mantendo-se a proporção com o retângulo de lados 3 e 4, um retângulo que tem para diagonal o
valor 20, só pode ter lados iguais a 12 e 16!
Resposta: letra d.
0

“Alguns A são R” e que “Nenhum G é R”

Se é verdade que “Alguns A são R” e que “Nenhum G é R”, então é necessariamente verdadeiro
que:
a) algum A não é G
b) algum A é G
 c) nenhum A é G
d) algum G é A
e) nenhum G é A



Solução:
Uma forma de se resolver rapidamente este tipo de questão é fazendo o seguinte:
Nas proposições categóricas do tipo:
• Todo A é B (proposição universal afirmativa);
• Nenhum A é B (proposição universal negativa);
• Algum A é B (proposição particular afirmativa);
• Algum A não é B (proposição particular negativa).
Proceda do seguinte modo:
• Elimine os atributos comuns às duas proposições;
• Conclua do seguinte modo:
⇒ “Todo” com “Nenhum” resulta “Nenhum”, associando os atributos restantes;
⇒ “Todo” com “Algum” resulta “Algum” associando os atributos restantes;
⇒ “Nenhum” com “Algum” resulta “Algum... não é...” associando os atributos restantes.
Neste questão temos que:
• Alguns A são R
• Nenhum G é R
O atributo comum aqui é o “R”. Eliminando-o, ficaremos com Algum A não é G
Resposta: letra a.

VISITE O CANAL DO AMIGO MATCÁLCULO