0

Segredos da Função Cosseno

Estudo da Função cosseno

Considera a função real de variável real f, definida por f(x) = cos{\text{ }}x.
1. Indica o dominio de f.

2. Esboça o gráfico de f.

3. A partir do gráfico obtido, faz um estudo da função f quanto a:
a. Período
b. Zeros
c. Extremos e extremantes
d. Paridade
e. Injetividade
f. Contradomínio
Resolução do Exercício de Matemática
1. Sendo o domínio de uma função o conjunto dos valores que podemos atribuir à variável independente x, temos que {D_f} = \mathbb{R}.
2. Para representar graficamente a função podemos utilizar o estudo efetuado no círculo trignométrico, relativo aos extremos e zeros.
estudo-da-funcao-cosseno-x
3. Com base na representação gráfica apresentada podemos afirmar que:
a. Periodicidade: fé uma função periódica de período positivo mínimo 2\pi , o que significa que a função cosseno assume os mesmos valores de 2\pi  em 2\pi , isto é cos(x) = cos(x + k \times 2\pi ),k \in \mathbb{Z}
periodicidade-funcao-cosseno-x
b. Zeros: fadmite zeros em x =\frac{\pi}{2} + k\pi \text{, } k\in \mathbb{Z}
c. Extremos: Os extremos e extremantes de fsão:
i. Mínimo = -1.
ii. Minimizantes: x = \pi + k \times 2\pi ,k \in \mathbb{Z}
iii. Máximo = 1.
iv. Maximizantes: x = k \times 2\pi ,k \in \mathbb{Z}
d. Paridade: fé uma função par, pois cos( - x) = cos{\text{ }}x,\forall x \in \mathbb{R}. Graficamente esta propriedade traduz-se pela existência de simetria relativamente ao eixo das ordenadas.
e. Injetividade: fnão é injetiva, pois é uma função periódica, isto é, há inúmeros objetos diferentes que têm a mesma imagem, exemplo cos( - \frac{\pi}{2} ) = cos(\frac{\pi}{2}) = 0
f. Contradomínio:D_f^' = \left[ { - 1,1} \right]
0

2 Pequenos Problemas para melhorar o raciocínio

Problemas para resolver

 1) Um pequeno caminhão pode carregar 50 sacos de areia ou 400 tijolos. Se foram colocados no caminhão 32 sacos de areia, quantos tijolos pode ainda ele carregar?




2) Dois pais e dois filhos foram pescar. Cada um pescou um peixe, sendo que ao todo foram pescados 3 peixes. Como isso é possível?

   



1 Resposta:

1 saco de areia = 8 tijolos.


Se o caminhão pode carregar ainda 18 sacos então pode carregar 18 ´ 8 = 144 tijolos.

2 Resposta:

Três pessoas estavam pescando: filho, pai e avô.

O pai é filho e pai ao mesmo tempo. Há dois filhos (filho e pai) e dois pais (pai e avô).



Nosso app Matcalculo.APP

Qual a sua dúvida?
Função AFIM ou QUADRÁTICAMEDIDAS DE COMPRIMENTO
 MEDIDAS DE ÁREAMEDIDAS VOLUMEMEDIDAS DE CAPACIDADE LITROS
POTENCIAÇÃOLOGP.APRODUTO NOTÁVELCURIOSIDADE Qual a sua dúvida?

NUMERO 13PARADOXO DO ANIVERSÁRIO, COMO GANHAR MAIS DE R$ 3.OOO POR MÊS
MAS SE VOCÊ QUER ESTUDAR E REALIZAR SEUS SONHOS COM UMA RENDA EXTRA, ENTÃO NÃO PERCA TEMPO CONHEÇA A UP! ESSÊNCIA

0

Conjunto dos Números

  Números Reais

O principal motivo para que a maioria dos cursos de Cálculo comecem por um breve estudo dos números reais é o fato de no Cálculo e na Análise, estuda-se o comportamento de funções e o comportamento de uma função depende dos três elementos importantes que a compõem: números Reais, números Racionais e números irracionais.




Para entendermos os números Reais, deveremos primeiro estudar os números, racionais e os números irracionais, uma vez que o mesmo é composto por estes dois conjuntos numéricos.



Os números reais são números usados para representar uma quantidade contínua (incluindo o zero e os negativos).



Números Naturais (N)

O conjunto de números naturais é representado pela letra N e é compostos por números inteiros e positivos, além do zero. É indicado por:

N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...}

O símbolo N* é usado para indicar o conjunto de números naturais, sem o zero:

N*  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...}

Números Inteiros (Z)

O conjunto dos números inteiros, representado pela letra Z, é o conjunto dos números naturais acrescido dos seus opostos negativos. Pode-se dizer que os números inteiros expressam quantidades (inteiros positivos) e a "falta" de quantidades (inteiros negativos).


O Conjunto dos Números Inteiros  é indicado por Z:

Z = {..., -5, -4, -3, -2, -1, 0 , 1, 2, 3, 4, 5, ...}

O símbolo Z* é usado para indicar o conjunto de números inteiros, sem o zero, ou seja:

Z* = {..., -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, ...}

Como todos os números naturais também são números inteiros, dizemos que N é um subconjunto de Z ou que N está contido em Z:

Alguns números inteiros apresentam uma série de características que os diferenciam de outros inteiros e que torna possível agrupá-los em subconjuntos. Veja alguns exemplos:

Números Primos

São chamados de primos os inteiros diferentes 1 que só são divisíveis por 1 e por ele mesmo

 ex: 2, 3, 5, 7, 11,13, 17, 19, etc.

Números Racionais (Q)

Quando dividimos um número inteiro (a) por outro número inteiro (b) obtemos um número racional. Todo número racional sempre é representado por uma parte inteira e por uma parte fracionária, a / b, Por exemplo:

Se a=6 e b=2, obtemos o número racional 3,0.
Se a=1 e b=2, obtemos o número racional 0,5. Ambos têm um número finito de casas após a vírgula e são chamados de racionais de decimal exata.

Existem casos em que o número de casas após a vírgula é infinito. Por exemplo, a=1 e b=8 nos dá o número racional 0,666666... É a chamada dízima periódica.

Podemos considerar que os números racionais englobam todos os números inteiros e os que ficam situados nos intervalos entre os números inteiros.

Q = {a/b | a Z e b Z*}, ou seja, o denominador deve sempre ser diferente de zero.

O símbolo Q* é usado para indicar o conjunto dos números racionais sem o zero:
          Q* = Q - {0}
Como todos os números inteiros também são números racionais, dizemos que Z é um subconjunto de Q ou que Z está contido em Q:


Números Irracionais (I)

Quando a divisão de dois números tem como resultado um número com infinitas casas depois da vírgula que não se repetem periodicamente, obtemos um número chamado de irracional. Não é possível situar um número irracional como um ponto numa reta.


O número irracional mais famoso  é o pi (
p), inicial da palavra grega que significa periferia, circunferência. Nos dias de hoje, já são conhecidos mais de 1 bilhão de casas após a vírgula para este número graças aos computadores e matemáticos de nossa época (p = 3.1415926535897932384626433832795...)

Números Reais (R)

Como já foi dito anteriormente, o conjunto formado por todos os números racionais e irracionais é o conjunto dos números reais, indicado por R.

Como todo número natural é inteiro, como todo número inteiro é racional e como todo número racional é real, temos:
                                                     

Indicamos por R* o conjunto de números reais sem o zero, ou seja,

R* = R - {0}

0

O Rei e o sábio Resposta.

Ele ficou com...

Solução:

Se o Rei nada lhe der, a frase do jovem se tornará verdadeira e, por conseguinte, o Rei não terá cumprido sua promessa.
Logo, o Rei deve dar algo ao jovem.
Se o Rei lhe der o cavalo veloz, a frase do jovem se tornará falsa e, neste caso, ao lhe dar o cavalo, o Rei não teria cumprido sua promessa. Portanto, o Rei não pode lhe dar o cavalo.
Se o Rei lher uma linda espada, a frase do jovem se tornará falsae, novamente, ao lhe dar a espada, o Rei teria descumprido sua promessa. Portanto o Rei não pode lhe dar a espada.
Se o Rei lhe der a mão da princesa, frase do jovem se tornará verdadeira, e o Rei terá cumprido sua palavra.
Conclusão: O Rei deve dar ao jovem a mão da princesa, mais não o cavalo veloz nem uma linda espada. Resposta B.

Questão

Qual a sua dúvida?
Função AFIM ou QUADRÁTICA, MEDIDAS DE COMPRIMENTO
 MEDIDAS DE ÁREA, MEDIDAS VOLUME, MEDIDAS DE CAPACIDADE LITROS
POTENCIAÇÃO, LOG, P.A, PRODUTO NOTÁVEL, CURIOSIDADE Qual a sua dúvida?

MAS SE VOCÊ QUER ESTUDAR E REALIZAR SEUS SONHOS COM UMA RENDA EXTRA, ENTÃO NÃO PERCA TEMPO CONHEÇA A UP! ESSÊNCIA

0

Curiosidade com números de três algarismos

Vale para todos

Curiosidade Com Números De Três Algarismos

Escolha qualquer número de três algarismos. Por exemplo: 234

Agora escreva este número na frente dele mesmo, assim:

234234

Agora divida por 13:

234234 :13 = 18018

Agora divida o resultado por 11:

18018 : 11 = 1638

Divida novamente o resultado, agora por 7:

1638 : 7 = 234

Viu só? O resultado é o numero de três algarismos que você escolheu: 234. Pode experimentar com qualquer outro número de três algarismos. O resultado será sempre o mesmo.

Qual a sua dúvida?
Função AFIM ou QUADRÁTICA, MEDIDAS DE COMPRIMENTO
 MEDIDAS DE ÁREA, MEDIDAS VOLUME, MEDIDAS DE CAPACIDADE LITROS
POTENCIAÇÃO, LOG, P.A, PRODUTO NOTÁVEL, CURIOSIDADE Qual a sua dúvida?

NUMERO 13, PARADOXO DO ANIVERSÁRIO, COMO GANHAR MAIS DE R$ 3.OOO POR MÊS
MAS SE VOCÊ QUER ESTUDAR E REALIZAR SEUS SONHOS COM UMA RENDA EXTRA, ENTÃO NÃO PERCA TEMPO CONHEÇA A UP! ESSÊNCIA

0

Estudo da Função Tangente

Estudo da Função Tangente

Considera a função real de variável real f, definida por f(x) = tg{\text{ }}x.
1. Indica o dominio de f.

2. Esboça o gráfico de f.

3. A partir do gráfico obtido, faz um estudo da função f quanto a:
a. Período
b. Zeros
c. Extremos e extremantes
d. Paridade
e. Injetividade
f. Contradomínio
Resolução do Exercício de Matemática
1. Sendo o domínio de uma função o conjunto dos valores que podemos atribuir à variável independente x, sendo que a tangente, \operatorname{tg} x = \frac{{\operatorname{sen} x}}{{\cos x}}, não está definida sempre que o cosseno se anula, logo D = \mathbb{R}\backslash \left\{ {x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}.
2. Para representar graficamente a função podemos utilizar o estudo efetuado no círculo trignométrico.
estudo-da-funcao-tangente
3. Com base na representação gráfica apresentada podemos afirmar que:
a. Periodicidade: fé uma função periódica de período positivo mínimo \pi , o que significa que a função tangente assume os mesmos valores de \pi  em   \pi , isto é tg(x) = tg(x + k \times \pi ),k \in \mathbb{Z}
periodicidade-funcao-tangente
b. Zeros: fadmite zeros em x = k\pi \text{, } k\in \mathbb{Z}
c. Extremos: f não tem extremos.
d. Paridade: fé uma função ímpar, pois tg( - x) = -tg{\text{ }}x,\forall x \in \mathbb{R}. Graficamente esta propriedade traduz-se pela existência de simetria relativamente à origem do referencial.
e. Injetividade: fnão é injetiva, pois é uma função periódica, isto é, há inúmeros objetos diferentes que têm a mesma imagem, exemplo tg( \pi) = tg(0) = 0
f. Contradomínio:D_f^' = \mathbb{R}
0

Probabilidade

Numa escola, realizou-se um estudo sobre os hábitos alimentares dos alunos. No âmbito desse estudo, analisou-se o peso de todos os alunos.
Sabe-se que:
• 55% dos alunos são raparigas;
• 30% das raparigas têm excesso de peso;
• 40% dos rapazes não têm excesso de peso;

1. Escolhe-se, ao acaso, um aluno dessa escola.
Determine a probabilidade de o aluno escolhido ser rapaz, sabendo que tem excesso de peso.
Apresente o resultado na forma de fração irredutível.

2. Considere agora que a escola onde o estudo foi realizado tem 200 alunos.
Pretende-se escolher, ao acaso, três alunos para representarem a escola num concurso.
Determine a probabilidade de serem escolhidos duas raparigas e um rapaz.
Apresente o resultado com arredondamento às centésimas.



Resolução do exercício de matemática:

1. Considere os seguintes acontecimentos:
exame 2012 f1 g2 exercicio2

A: “o aluno escolhido é rapaz”

B: “o aluno escolhido tem excesso de peso”
P\left( {\overline A } \right) = 0,55
P\left( A \right) = 1 - 0,55 = 0,45
P\left( {B|\overline A } \right) = 0,3 \Leftrightarrow \frac{{P\left( {B \cap \overline A } \right)}}{{0,55}} = 0,3 \Leftrightarrow P\left( {B \cap \overline A } \right) = 0,165
P\left( {\overline B \cap \overline A } \right) = 0,55 - 0,165 = 0,385
P\left( {\overline B |A} \right) = 0,4 \Leftrightarrow \frac{{P\left( {\overline B \cap A} \right)}}{{0,45}} = 0,4 \Leftrightarrow P\left( {\overline B \cap A} \right) = 0,18
P\left( {\overline B } \right) = 0,18 + 0,385 = 0,565
P\left( B \right) = 1 - 0,565 = 0,435
P\left( {A \cap B} \right) = 0,435 - 0,165 = 0,27
P\left( {A|B} \right) = \frac{{0,27}}{{0,435}} = \frac{{18}}{{29}}

2.
N.º de raparigas: 0,55 x 200 = 110
N.º de rapazes: 0,45 x 200 = 90
P = \frac{{{}^{110}{C_2} \times {}^{90}{C_1}}}{{{}^{200}{C_3}}} = \frac{{539550}}{{1313400}} = \frac{{327}}{{796}} \approx 0,41
0

Produtos Notáveis


Produtos notáveis

0

Um Rei diz a um jovem sábio: "dizei-me uma frase e se ela for verdadeira prometo que vos..

O Rei o Sábio e a Princesa 

Um Rei diz a um jovem sábio: "dizei-me uma frase e se ela for verdadeira prometo que vos darei ou cavalo veloz, ou uma linda espada, ou a mão da princesa; se ela for falsa não vos darei nada". O jovem sábio disse, então: "Vossa majestade não me dará nem o cavalo veloz, nem a linda espada". Para manter a promessa feita, o Rei:

a) Deve dar o cavalo veloz e a linda espada
b) deve dar a mão da princesa, mas não o cavalo veloz e nem a linda espada
c) Deve dar a mão da princesa o cavalo veloz e uma linda espada
d) Deve dar o cavalo veloz ou a linda espada, mas não a mão da princesa
e)Não deve dar nem o cavalo veloz, nem a linda espada, nem a mão da princesa

Resposta


Qual a sua dúvida?
Função AFIM ou QUADRÁTICA, MEDIDAS DE COMPRIMENTO
 MEDIDAS DE ÁREA, MEDIDAS VOLUME, MEDIDAS DE CAPACIDADE LITROS
POTENCIAÇÃO, LOG, P.A, PRODUTO NOTÁVEL, CURIOSIDADE Qual a sua dúvida?

MAS SE VOCÊ QUER ESTUDAR E REALIZAR SEUS SONHOS COM UMA RENDA EXTRA, ENTÃO NÃO PERCA TEMPO CONHEÇA A UP! ESSÊNCIA

renda-extra.html